Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity

نویسندگان

  • Fangfang Wang
  • Xiaoliang Zeng
  • Yimin Yao
  • Rong Sun
  • Jianbin Xu
  • Ching-Ping Wong
چکیده

Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly thermally conductive papers with percolative layered boron nitride nanosheets.

In this work, we report a dielectric nanocomposite paper with layered boron nitride (BN) nanosheets wired by one-dimensional (1D) nanofibrillated cellulose (NFC) that has superior thermal and mechanical properties. These nanocomposite papers are fabricated from a filtration of BN and NFC suspensions, in which NFC is used as a stabilizer to stabilize BN nanosheets. In these nanocomposite papers,...

متن کامل

Dielectric and thermal properties of epoxy/boron nitride nanotube composites*

We report the fabrication of and investigations into the dielectric and thermal properties of epoxy/boron nitride nanotube (BNNT) composites. It was found that BNNT fillers can effectively adjust the dielectric constant of epoxy. Moreover, the thermal conductivity of epoxy was improved by up to 69 % with 5 wt % BNNTs. Our studies indicate that BNNTs are promising nanofillers for polymers, to ob...

متن کامل

Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers

A solvent-free method for the fabrication of thermally conductive epoxy-boron nitride (BN) nanoplatelet composite material is developed in this study. By this method, polymer composites with nearly any filler fractions can be easily fabricated. The maximum thermal conductivity reaches 5.24 W/mK, which is 1,600% improvement in comparison with that of pristine epoxy material. In addition, the as-...

متن کامل

Thermal Conductivity Performance of Polypropylene Composites Filled with Polydopamine-Functionalized Hexagonal Boron Nitride

Mussel-inspired approach was attempted to non-covalently functionalize the surfaces of boron nitride (BN) with self-polymerized dopamine coatings in order to reduce the interfacial thermal barrier and enhance the thermal conductivity of BN-containing composites. Compared to the polypropylene (PP) composites filled with pristine BN at the same filler content, thermal conductivity was much higher...

متن کامل

Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride.

A new thermally conductive polyimide composite film has been developed. It is based on a dispersion of different particle sizes of boron nitride (BN) in a polyimide (PI) precursor, polyamic acid (PAA). Subsequently, thermal imidization of PAA at 350 degrees C produced the corresponding polyimide composites. 3-Mercaptopropionic acid was used as the surfactant to modify the BN surface for the dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016